Bioengineering (Feb 2024)

Investigation of How Corneal Densitometry Artefacts Affect the Imaging of Normal and Keratoconic Corneas

  • Rami Alanazi,
  • Louise Pellegrino Gomes Esporcatte,
  • Lynn White,
  • Marcella Q. Salomão,
  • Bernardo T. Lopes,
  • Renato Ambrósio Jr.,
  • Ahmed Abass

DOI
https://doi.org/10.3390/bioengineering11020148
Journal volume & issue
Vol. 11, no. 2
p. 148

Abstract

Read online

Purpose: To investigate corneal densitometry artefacts found in Pentacam Scheimpflug scans and their potential effect on assessing keratoconic (KC) corneas compared to normal (N) corneas. Methods: The current study utilises Pentacam data of 458 N eyes, aged 35.6 ± 15.8 (range 10–87), referred to as the “N group”, and 314 KC eyes, aged 31.6 ± 10.8 (range 10–72), referred to as the “KC group”, where densitometry data were extracted and analysed via a custom-built MATLAB code. Radial summations of the densitometry were calculated at diameters ranging from 0.5 mm to 5.0 mm. The minimum normalised radial summation of densitometry (NRSD) value and angle were determined at each diameter and then linked. KC cone locations and areas of pathology were determined, and a comparison between N and KC groups was carried out both within the averaged area of pathology and over the corneal surface. Results: Joining minimum NRSD trajectory points marked a clear distortion line pointing to the nasal-superior direction at 65° from the nasal meridian. The findings were found to be independent of eye laterality or ocular condition. Consistency was detected in the right and left eyes among both the N and KC groups. The location of the KC cone centre and the area of pathology were determined, and the densitometry output was compared both within the area of pathology and over the whole cornea. When the average densitometry was compared between N and KC eyes within the KC area of pathology, the N group recorded a 16.37 ± 3.15 normalised grey-scale unit (NGSU), and the KC group recorded 17.74 ± 3.4 NGSU (p = 0.0001). However, when the whole cornea was considered, the N group recorded 16.71 ± 5.5 NGSU, and the KC group recorded 15.72 ± 3.98 NGSU (p = 0.0467). A weak correlation was found between the Bad D index and NGSU when the whole measured cornea was considered (R = −0.01); however, a better correlation was recorded within the KC area of pathology (R = 0.21). Conclusions: Nasal-superior artefacts are observed in the densitometry Pentacam maps, and analysis shows no significant differences in their appearance between N or KC corneas. When analysing KC corneas, it was found that the cone positions are mostly on the temporal-inferior side of the cornea, opposite to the densitometry artefact NRSD trajectory. The analysis suggests that the corneal densitometry artefacts do not interfere with the KC area of pathology as it reaches its extreme in the opposite direction; therefore, weighting the densitometry map to increase the contribution of the inferior-temporal cornea and decreasing that of the superior-nasal area would improve the classification or identification of KC if densitometry is to be used as a KC metric.

Keywords