Selection of Predatory Mites for the Biological Control of Potato Tuber Moth in Stored Potatoes
Juan R. Gallego,
Otto Caicedo,
Manuel Gamez,
Joaquin Hernandez,
Tomas Cabello
Affiliations
Juan R. Gallego
Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAMBITAL), Agrifood Campus of International Excellence (CEIA3), University of Almeria, Ctra. de Sacramento, s/n, 04120 La Cañada, Almeria, Spain
Otto Caicedo
Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAMBITAL), Agrifood Campus of International Excellence (CEIA3), University of Almeria, Ctra. de Sacramento, s/n, 04120 La Cañada, Almeria, Spain
Manuel Gamez
Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAMBITAL), Agrifood Campus of International Excellence (CEIA3), University of Almeria, Ctra. de Sacramento, s/n, 04120 La Cañada, Almeria, Spain
Joaquin Hernandez
Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAMBITAL), Agrifood Campus of International Excellence (CEIA3), University of Almeria, Ctra. de Sacramento, s/n, 04120 La Cañada, Almeria, Spain
Tomas Cabello
Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAMBITAL), Agrifood Campus of International Excellence (CEIA3), University of Almeria, Ctra. de Sacramento, s/n, 04120 La Cañada, Almeria, Spain
Worldwide, the potato tuber moth (PTM), Phthorimaea operculella (Zeller), is one of the most severe pests affecting potato (Solanum tuberosum L.), whether in open-air crops or during tuber storage. This work examines the potential control of this pest by two species of predatory mites, Macrocheles robustulus (Berlese) and Blattisocius tarsalis (Berlese), on pest eggs under laboratory conditions. In the two first assays, the acceptance rate of the pest eggs was assessed for each predatory mite. Then, in a third assay, the functional response of B. tarsalis was studied. The results showed that Macrocheles robustulus did not prey on the pest eggs (number of eggs surviving = 4.33 ± 0.38), whereas B. tarsalis did (number of eggs surviving = 0.5 ± 0.5). Likewise, B. tarsalis showed a type II functional response when it killed the eggs. The results showed the potential use of Blattisocius tarsalis as a biological control agent of P. operculella in potato under storage conditions.