Nature Communications (Dec 2020)

Automation and control of laser wakefield accelerators using Bayesian optimization

  • R. J. Shalloo,
  • S. J. D. Dann,
  • J.-N. Gruse,
  • C. I. D. Underwood,
  • A. F. Antoine,
  • C. Arran,
  • M. Backhouse,
  • C. D. Baird,
  • M. D. Balcazar,
  • N. Bourgeois,
  • J. A. Cardarelli,
  • P. Hatfield,
  • J. Kang,
  • K. Krushelnick,
  • S. P. D. Mangles,
  • C. D. Murphy,
  • N. Lu,
  • J. Osterhoff,
  • K. Põder,
  • P. P. Rajeev,
  • C. P. Ridgers,
  • S. Rozario,
  • M. P. Selwood,
  • A. J. Shahani,
  • D. R. Symes,
  • A. G. R. Thomas,
  • C. Thornton,
  • Z. Najmudin,
  • M. J. V. Streeter

DOI
https://doi.org/10.1038/s41467-020-20245-6
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Laser wakefield accelerators are compact sources of ultra-relativistic electrons which are highly sensitive to many control parameters. Here the authors present an automated machine learning based method for the efficient multi-dimensional optimization of these plasma-based particle accelerators.