Earth, Planets and Space (Dec 2018)

Inflation and collapse of the Wai’anae volcano (Oahu, Hawaii, USA): implications from rock magnetic properties and magnetic fabric data of dikes

  • Emilio Herrero-Bervera,
  • Bernard Henry,
  • Mário Moreira

DOI
https://doi.org/10.1186/s40623-018-0960-z
Journal volume & issue
Vol. 70, no. 1
pp. 1 – 19

Abstract

Read online

Abstract In order to investigate the role of dikes in the volcanic evolution and the triggering mechanisms of catastrophic mass wasting volcanoes, we have sampled for a pilot study, seven dikes within the Wai’anae volcano, Oahu, Hawaii. The width of the dikes ranged between 0.4 and 2.5 m. This work focuses on the characterization of the magma flow directions using anisotropy of magnetic susceptibility (AMS) data in dikes of the inner part of the Wai’anae volcano. This part is now exposed, because this volcano experienced destabilization and flank collapse. Rock magnetism data show composite magnetic mineralogy, corresponding when plotted on the Day diagram to be dominated by single domain (SD) and pseudo-single domain particles of pure titanomagnetite, suggesting possible inverse magnetic fabric associated with the SD grains. The obtained magnetic fabric does not reflect such grain sizes and is probably partly related to the presence of different magnetic phases, resulting in part of our samples as having “abnormal” fabrics. We therefore used a simple criterion to eliminate most of the abnormal fabrics in order to analyze the magnetic fabric data in a clearer way. After rejection of most of the abnormal data, the determination of the magnetic zone axis, which underlines the effect of imbrication in dike margins, yielded reliable magma flow directions in most of the studied dikes, with a predominance of vertical to subvertical AMS directions. The inferred dominantly vertical to subvertical magma flow of dikes (feeding from below) within the most internal parts of the volcano, suggests a process of accumulation of new magma at different levels within the inner part of the edifice. This process was enhanced by subhorizontal magma flow toward the volcano center in two other dikes. Such accumulation helps to explain the inflation, subsequent destabilization, and flank collapse of the Wai’anae volcano.

Keywords