We present a novel decision-making framework for accelerated degradation tests and predictive maintenance that exploits prior knowledge and experimental data on the system’s state. As a framework for sequential decision making in these areas, dynamic programming and reinforcement learning are considered, along with data-driven degradation learning when necessary. Furthermore, we illustrate both stochastic and machine learning degradation models, which are integrated in the framework, using data-driven methods. These methods are presented as a valuable tool for designing life-testing experiments and for maintaining lithium-ion batteries.