IEEE Access (Jan 2021)
Automatic Model Determination for Quaternion NMF
Abstract
Nonnegative Matrix Factorization (NMF) is a well-known method for Blind Source Separation (BSS). Recently, BSS for polarized signals in spectropolarimetric data, containing both polarization and spectral information, was introduced. This information was encoded in 4-dimensional Stokes vectors represented by quaternion numbers. In the proposed Quaternion NMF (QNMF), the common challenge of determining the (usually) unknown number of quaternion signals remained unaddressed. Estimating the number of signals (aka model determination) is important, since an underestimation of this number results in poor source separation and omission of signals, while overestimation leads to extraction of noisy signals without physical meaning. Here, we introduce a method for determining the number of polarized signals in spectropolarimetric data, named QNMF $k$ . QNMF $k$ integrates: (a) Quaternion Alternating Direction Method of Multipliers (QADMM) implemented for QNMF, (b) random resampling of the initial quaternion data, and (c) custom clustering of sets of QADMM solutions with same number of sources, $k$ , needed to estimate the stability of the solutions. The appropriate latent dimension is determined based on the stability of the solutions. We demonstrate that, without any prior information, QNMF $k$ accurately extracts the correct number of signals used to generate synthetic quaternion datasets and a benchmark spectropolarimetric data.
Keywords