Physical Review X (Dec 2018)

Finite Dissipation in Anisotropic Magnetohydrodynamic Turbulence

  • Riddhi Bandyopadhyay,
  • S. Oughton,
  • M. Wan,
  • W. H. Matthaeus,
  • R. Chhiber,
  • T. N. Parashar

DOI
https://doi.org/10.1103/PhysRevX.8.041052
Journal volume & issue
Vol. 8, no. 4
p. 041052

Abstract

Read online Read online

In the presence of an externally supported, mean magnetic field, a turbulent, conducting medium, such as plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent part of the magnetic field, has considerable effects on the dynamics of the system. In this paper, we examine the dissipation rates for decaying incompressible magnetohydrodynamic (MHD) turbulence with an increasing Reynolds number and in the presence of a mean magnetic field of varying strength. Proceeding numerically, we find that, as the Reynolds number increases, the dissipation rate asymptotes to a finite value for each magnetic-field strength, confirming the Kármán-Howarth hypothesis as applied to MHD. The asymptotic value of the dimensionless dissipation rate is initially suppressed from the zero-mean-field value by the mean magnetic field but then approaches a constant value for higher values of the mean-field strength. Additionally, for comparison, we perform a set of two-dimensional (2DMHD) and a set of reduced MHD (RMHD) simulations. We find that the RMHD results lie very close to the values corresponding to the high-mean-field limit of the three-dimensional runs while the 2DMHD results admit distinct values far from both the zero-mean-field cases and the high-mean-field limit of the three-dimensional cases. These findings provide firm underpinnings for numerous applications in space and astrophysics wherein von Kármán decay of turbulence is assumed.