Acta Universitatis Sapientiae: Mathematica (Aug 2016)

Some vector inequalities for two operators in Hilbert spaces with applications

  • Dragomir Sever S.

DOI
https://doi.org/10.1515/ausm-2016-0005
Journal volume & issue
Vol. 8, no. 1
pp. 75 – 92

Abstract

Read online

In this paper we establish some vector inequalities for two operators related to Schwarz and Buzano results. We show amongst others that in a Hilbert space H we have the inequality 12[〈|A|2+|B|22x,x〉1/2〈|A|2+|B|22y,y〉1/2+|〈|A|2+|B|22x,y〉|]≥|〈Re (B*A) x,y〉|$${1 \over 2}\left[ {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{x}},{\rm{x}}} \right\rangle ^{1/2} \left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{y}},{\rm{y}}} \right\rangle ^{1/2} + \left| {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over {\rm{2}}}} {\rm{x}},{\rm{y}}\right\rangle } \right|} \right] \ge \left| {\left\langle {{\mathop{\rm Re}\nolimits} ({\rm{B}}*{\rm{A}})\,{\rm{x}},{\rm{y}}} \right\rangle } \right|$$ for A, B two bounded linear operators on H such that Re (B*A) is a nonnegative operator and any vectors x, y ∈ H.

Keywords