Acta Universitatis Sapientiae: Mathematica (Aug 2016)
Some vector inequalities for two operators in Hilbert spaces with applications
Abstract
In this paper we establish some vector inequalities for two operators related to Schwarz and Buzano results. We show amongst others that in a Hilbert space H we have the inequality 12[〈|A|2+|B|22x,x〉1/2〈|A|2+|B|22y,y〉1/2+|〈|A|2+|B|22x,y〉|]≥|〈Re (B*A) x,y〉|$${1 \over 2}\left[ {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{x}},{\rm{x}}} \right\rangle ^{1/2} \left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over 2}{\rm{y}},{\rm{y}}} \right\rangle ^{1/2} + \left| {\left\langle {{{\left| {\rm{A}} \right|^2 + \left| {\rm{B}} \right|^2 } \over {\rm{2}}}} {\rm{x}},{\rm{y}}\right\rangle } \right|} \right] \ge \left| {\left\langle {{\mathop{\rm Re}\nolimits} ({\rm{B}}*{\rm{A}})\,{\rm{x}},{\rm{y}}} \right\rangle } \right|$$ for A, B two bounded linear operators on H such that Re (B*A) is a nonnegative operator and any vectors x, y ∈ H.
Keywords