Revista Caatinga (Jan 2018)
BIOMASS AND CHLOROPLAST PIGMENTS IN JACKFRUIT SEEDLINGS UNDER SALINE STRESS AND NITROGEN FERTILIZATION
Abstract
Irrigation with saline water is a worldwide necessity an excess of salts in water or in soil causes growth inhibition, and negatively affects the productivity of many crops. Application of nitrogen fertilizers may be a way of mitigating the effects of salts on plants. The aim of this study was to evaluate the accumulation of biomass and the chlorophyll pigment content in jackfruit seedlings irrigated with water of increasing salinity level in soil with nitrogen sources. The treatments were distributed in randomized blocks with four replicates and three plants per plot, arranged in a 5 × 3 factorial scheme, related to electrical conductivity levels of the irrigation water of 0.3, 1.0, 2.0, 3.0 and 4.0 dS m-1, in soil without nitrogen, with ammonium sulfate and with urea, in a split application 60 and 75 days after sowing. An increase in the salinity of the water increased the salinity levels of soil, which was intensified by a dose of 150 mg of N, mainly when applied in the form of ammonium sulfate, inhibiting dry matter production and chlorophyll content in jackfruit seedlings. The greatest reductions in chlorophyll a and b content occurred in jackfruit seedlings irrigated with water of 4.0 dS m-1 conductivity in the soil without nitrogen fertilization. Urea is the most suitable nitrogen source for the production of seedlings under conditions of high salinity.