Agriculture (Aug 2024)
SPCN: An Innovative Soybean Pod Counting Network Based on HDC Strategy and Attention Mechanism
Abstract
Soybean pod count is a crucial aspect of soybean plant phenotyping, offering valuable reference information for breeding and planting management. Traditional manual counting methods are not only costly but also prone to errors. Existing detection-based soybean pod counting methods face challenges due to the crowded and uneven distribution of soybean pods on the plants. To tackle this issue, we propose a Soybean Pod Counting Network (SPCN) for accurate soybean pod counting. SPCN is a density map-based architecture based on Hybrid Dilated Convolution (HDC) strategy and attention mechanism for feature extraction, using the Unbalanced Optimal Transport (UOT) loss function for supervising density map generation. Additionally, we introduce a new diverse dataset, BeanCount-1500, comprising of 24,684 images of 316 soybean varieties with various backgrounds and lighting conditions. Extensive experiments on BeanCount-1500 demonstrate the advantages of SPCN in soybean pod counting with an Mean Absolute Error(MAE) and an Mean Squared Error(MSE) of 4.37 and 6.45, respectively, significantly outperforming the current competing method by a substantial margin. Its excellent performance on the Renshou2021 dataset further confirms its outstanding generalization potential. Overall, the proposed method can provide technical support for intelligent breeding and planting management of soybean, promoting the digital and precise management of agriculture in general.
Keywords