Frontiers in Plant Science (Jun 2024)

YOLO SSPD: a small target cotton boll detection model during the boll-spitting period based on space-to-depth convolution

  • Mengli Zhang,
  • Wei Chen,
  • Pan Gao,
  • Yongquan Li,
  • Fei Tan,
  • Yuan Zhang,
  • Shiwei Ruan,
  • Peng Xing,
  • Li Guo

DOI
https://doi.org/10.3389/fpls.2024.1409194
Journal volume & issue
Vol. 15

Abstract

Read online

IntroductionCotton yield estimation is crucial in the agricultural process, where the accuracy of boll detection during the flocculation period significantly influences yield estimations in cotton fields. Unmanned Aerial Vehicles (UAVs) are frequently employed for plant detection and counting due to their cost-effectiveness and adaptability.MethodsAddressing the challenges of small target cotton bolls and low resolution of UAVs, this paper introduces a method based on the YOLO v8 framework for transfer learning, named YOLO small-scale pyramid depth-aware detection (SSPD). The method combines space-to-depth and non-strided convolution (SPD-Conv) and a small target detector head, and also integrates a simple, parameter-free attentional mechanism (SimAM) that significantly improves target boll detection accuracy.ResultsThe YOLO SSPD achieved a boll detection accuracy of 0.874 on UAV-scale imagery. It also recorded a coefficient of determination (R2) of 0.86, with a root mean square error (RMSE) of 12.38 and a relative root mean square error (RRMSE) of 11.19% for boll counts.DiscussionThe findings indicate that YOLO SSPD can significantly improve the accuracy of cotton boll detection on UAV imagery, thereby supporting the cotton production process. This method offers a robust solution for high-precision cotton monitoring, enhancing the reliability of cotton yield estimates.

Keywords