Entropy (Feb 2020)

Information Entropy-Based Intention Prediction of Aerial Targets under Uncertain and Incomplete Information

  • Tongle Zhou,
  • Mou Chen,
  • Yuhui Wang,
  • Jianliang He,
  • Chenguang Yang

DOI
https://doi.org/10.3390/e22030279
Journal volume & issue
Vol. 22, no. 3
p. 279

Abstract

Read online

To improve the effectiveness of air combat decision-making systems, target intention has been extensively studied. In general, aerial target intention is composed of attack, surveillance, penetration, feint, defense, reconnaissance, cover and electronic interference and it is related to the state of a target in air combat. Predicting the target intention is helpful to know the target actions in advance. Thus, intention prediction has contributed to lay a solid foundation for air combat decision-making. In this work, an intention prediction method is developed, which combines the advantages of the long short-term memory (LSTM) networks and decision tree. The future state information of a target is predicted based on LSTM networks from real-time series data, and the decision tree technology is utilized to extract rules from uncertain and incomplete priori knowledge. Then, the target intention is obtained from the predicted data by applying the built decision tree. With a simulation example, the results show that the proposed method is effective and feasible for state prediction and intention recognition of aerial targets under uncertain and incomplete information. Furthermore, the proposed method can make contributions in providing direction and aids for subsequent attack decision-making.

Keywords