Nukleonika (Sep 2015)

The influence of ionizing radiation on the properties of starch-PVA films

  • Abramowska Anna,
  • Cieśla Krystyna A.,
  • Buczkowski Marek J.,
  • Nowicki Andrzej,
  • Głuszewski Wojciech

DOI
https://doi.org/10.1515/nuka-2015-0088
Journal volume & issue
Vol. 60, no. 3
pp. 669 – 677

Abstract

Read online

The cornstarch: poly(vinyl alcohol) (PVA) films characterized by the alternating ratio of starch:PVA (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100) and containing 30% of glycerol were prepared by solution casting. The films were irradiated with an absorbed dose of 25 kGy with gamma rays in a vacuum and with fast electrons in the air. The films characterized by a high content of starch appeared stiff, while the films characterized by a high content of PVA were highly flexible. The tensile strength and flexibility, as well as swelling and hydrophilicity, increased with the increase in the PVA content in the films. However, the tensile strength and wetting angle values achieved a minimum at an intermediate composition. It was found that irradiation enables to reduce hydrophilicity of the films accompanied by a decrease in their flexibility. No general conclusion concerning the effect of irradiation on tensile strength and swelling behavior can be derived. An increase in the homogeneity of the films and an increase in the compatibility of their components was found by scanning electron microscopy (SEM). Strong interactions of the starch and the PVA components were discovered by diffuse reflectance spectroscopy. Degradation was found to be the prevailing process occurring in the films under the influence of irradiation. The possible accompanying crosslinking is discussed in terms of the gel content in the samples. Creation of various oxidation products in the films characterized by the modified composition was observed under the influence of irradiation carried out in the air. Basing on the obtained results it can be supposed that the selected starch-PVA compositions might appear useful as packagings of the products predicted for radiation decontamination.

Keywords