Batteries (May 2024)

A Comparative Study on Electrochemical Performance of Single versus Dual Networks in Lithium Metal/Polysulfide-Polyoxide Co-Network/Lithium Titanium Oxide Cathode

  • Hyunsang Lee,
  • Jae-Won Choi,
  • Thein Kyu

DOI
https://doi.org/10.3390/batteries10050163
Journal volume & issue
Vol. 10, no. 5
p. 163

Abstract

Read online

The present article introduces a strategy for controlling oxidation and reduction reactions within polymer electrolyte membrane (PEM) networks as a means of enhancing storage capacity through the complexation of dissociated lithium cations with multifunctional groups of the polymer network. Specifically, co-polymer networks based on polysulfide (PS) and polyoxide (PO) precursors, photo-cured in the presence of succinonitrile (SCN) and lithium bis(trifluoro methane sulfonyl imide) (LiTFSI) salt, exhibited ionic conductivity on the order of mid 10−4 S/cm at ambient temperature in the 30/35/35 (weight %) composition. Lithium titanate (LTO, Li4Ti5O12) electrode was chosen as an anode (i.e., a potential source of Li ions) against lithium iron phosphate (LFP, LiFePO4) cathode in conjunction with polysulfide-co-polyoxide dual polyelectrolyte networks to control viscosity for 3D printability on conformal surfaces of drone and aeronautic vehicles. It was found that the PS-co-PO dual network-based polymer electrolyte containing SCN plasticizer and LiTFSI salt exhibited extra storage capacity (i.e., specific capacity of 44 mAh/g) with the overall specific capacity of 170 mAh/g (i.e., for the combined LTO electrode and PEM) initially that stabilized at 153 mAh/g after 50th cycles with a reasonable capacity retention of over 90% and Coulombic efficiency of over 99%. Of particular interest is the observation of the improved electrochemical performance of the polysulfide-co-polyoxide electrolyte dual-network relative to that of the polyoxide electrolyte single-network.

Keywords