Antibiotics (May 2022)
Antimicrobial Resistance and Comparative Genomic Analysis of <i>Elizabethkingia anophelis</i> subsp. <i>endophytica</i> Isolated from Raw Milk
Abstract
Elizabethkingia anophelis is an emerging multidrug-resistant pathogen that causes severe nosocomial and community-acquired infections worldwide. We report the first case of E. anophelis isolation in Russia and the first isolation from raw cow’s milk. The ML-44 demonstrated resistance to 28 antimicrobials of 33 tested in the disk-diffusion test. Whole genome-based phylogeny showed ML-44 strain clustered together with the F3201 strain isolated from a human patient in Kuwait in 1982. Both strains were a part of the “endophytica” clade. Another clade was formed by subsp. anophelis strains. Each of the E. anophelis compared genomes carried 18 to 21 antibiotic resistance determinants. The ML-44 chromosome harbored nine efflux system genes and three beta-lactamase genes, along with six other antimicrobial resistance genes. In total, 72 virulence genes were revealed. The set of virulence factors was quite similar between different E. anophelis strains and included LPS and capsule encoded genes, type IV pili, oxidative stress response genes, and genes encoding TIVSS and TVISS effectors. The particular interest caused the mip and zmp1 gene homologs, which can be essential for intracellular survival. In sum, our findings suggest that raw milk might be a source of E. anophelis harboring a set of virulence factors and a broad resistance to generally used antimicrobials.
Keywords