The reduction mechanisms of Yb(III) on W electrodes in molten LiCl-KCl-YbCl3 were explored at 773 K, and the diffusion coefficient of Yb(III) was determined. Then, various electrochemical techniques were employed to investigate the electroreduction of Yb(III) in molten LiCl-KCl on a liquid Pb film and Pb electrode. Electrochemical signals were associated with forming Pb3Yb, PbYb, Pb3Yb5, and PbYb2. The deposition potentials and equilibrium potentials of four Pb-Yb intermetallics were obtained through open-circuit chronopotentiometry. Metallic Yb was extracted by potentiostatic electrolysis (PE) on a liquid Pb electrode, and XRD analyzed the Pb-Yb alloy obtained at different extraction times. The recovered Yb was found in the form of Pb3Yb and PbYb intermetallics. The extraction efficiency of Yb was calculated according to ICP analysis results, and extraction effectivity could attain 94.5% via PE at −1.86 V for 14 h.