IEEE Access (Jan 2022)

On Hamming Distance Distributions of Repeated-Root Cyclic Codes of Length 5p<sup>s</sup> Over F<sub>p</sub> <sup>m</sup> &#x002B; uF<sub>p</sub> <sup>m</sup>

  • Hai Q. Dinh,
  • Bac T. Nguyen,
  • Hiep L. Thi,
  • Woraphon Yamaka

DOI
https://doi.org/10.1109/ACCESS.2022.3219498
Journal volume & issue
Vol. 10
pp. 119883 – 119904

Abstract

Read online

Let $p\not =5$ be any odd prime. Using the algebraic structures of all cyclic codes of length $5p^{s}$ over the finite commutative chain ring ${\mathcal{ R}}=\mathbb F_{p^{m}}+u\mathbb F_{p^{m}}$ , in this paper, the exact values of Hamming distances of all cyclic codes of length $5p^{s}$ over $\cal R$ are established. As an application, we identify all maximum distance separable cyclic codes of length $5p^{s}$ .

Keywords