International Journal of Nanomedicine (Oct 2014)

Siliceous mesostructured cellular foams/ poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite biomaterials for bone regeneration

  • Yang S,
  • Xu S,
  • Zhou P,
  • Wang J,
  • Tan H,
  • Liu Y,
  • Tang TT,
  • Liu CS

Journal volume & issue
Vol. 2014, no. Issue 1
pp. 4795 – 4807

Abstract

Read online

Shengbing Yang,1,* Shuogui Xu,2,* Panyu Zhou,2,* Jing Wang,3 Honglue Tan,4 Yang Liu,5 TingTing Tang,4 ChangSheng Liu1,3,5 1The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China; 2Changhai Hospital, Department of Orthopedics, the Second Military Medical University, Shanghai, People’s Republic of China; 3Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China; 4Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine China, Shanghai, People’s Republic of China; 5Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of China *These authors contributed equally to this workAbstract: Osteoinductive and biodegradable composite biomaterials for bone regeneration were prepared by combining poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) with siliceous mesostructured cellular foams (SMC), using the porogen leaching method. Surface hydrophilicity, morphology, and recombinant human bone morphogenetic protein 2 adsorption/release behavior of the SMC/PHBHHx scaffolds were analyzed. Results of scanning electron microscopy indicated that the SMC was uniformly dispersed in the PHBHHx scaffolds, and SMC modification scaffolds have an interconnected porous architecture with pore sizes ranging from 200 to 400 µm. The measurements of the water contact angles suggested that the incorporation of SMC into PHBHHx improves the hydrophilicity of the composite. In vitro studies with simulated body fluid show great improvements to bioactivity and biodegradability versus pure PHBHHx scaffolds. Cell adhesion and cell proliferation on the scaffolds was also evaluated, and the new tools provide a better environment for human mesenchymal stem cell attachment, spreading, proliferation, and osteogenic differentiation on PHBHHx scaffolds. Moreover, micro-computed tomography and histological evaluation confirmed that the SMC/PHBHHx scaffolds improved the efficiency of new bone regeneration with excellent biocompatibility and biodegradability and faster and more effective osteogenesis in vivo. Keywords: stem cells, mesoporous, scaffolds, bone regeneration, rhBMP-2