Current Research in Physiology (Jan 2023)
Assessing uterine electrophysiology prior to elective term induction of labor
Abstract
Objective: The purpose of this study was to determine if uterine electrophysiological signals gathered from 151 non-invasive biomagnetic sensors spread over the abdomen were associated with successful induction of labor (IOL). Study design: Uterine magnetomyogram (MMG) signals were collected using the SARA (SQUID Array for Reproductive Assessment) device from 33 subjects between 37 and 42 weeks gestational age. The signals were post-processed, uterine contractile related MMG bursts were detected, and parameters in the time and frequency domain were extracted. The modified Bishop score calculated at admission was used to determine the method of IOL. Wilcoxon's rank-sum test was used to compare IOL successes and failures for differences in gestational age (GA), parity, modified Bishop's score, maximum oxytocin, and electrophysiological parameters extracted from MMG. Results: The average parity was three times (3x) higher (1.53 versus 0.50; p = 0.039), and the average modified Bishop score was 2x higher (3.32 versus 1.63; p = 0.032) amongst IOL successes than failures, while the average GA and maximum oxytocin showed a small difference. For the MMG parameters, successful IOLs had, on average, 3.5x greater mean power during bursts (0.246 versus 0.070; p = 0.034) and approximately 1.2x greater mean number of bursts (2.05 versus 1.68; p = 0.036) compared to the failed IOLs, but non-significant differences were observed in mean peak frequency, mean burst duration, and mean duration between bursts. Conclusion: The study showed that inductions of labor that took less than 24 h to deliver have a higher mean power in the baseline electrophysiological activity of the uterus when recorded prior to planned induction. The results are indicative that baseline electrophysiological activity measured prior to induction is associated with successful induction.