Forests (Jan 2024)

Early Dynamics of Carbon Accumulation as Influenced by Spacing of a <i>Populus deltoides</i> Planting

  • Emile S. Gardiner,
  • Krishna P. Poudel,
  • Theodor D. Leininger,
  • Ray A. Souter,
  • Randall J. Rousseau,
  • Bini Dahal

DOI
https://doi.org/10.3390/f15020226
Journal volume & issue
Vol. 15, no. 2
p. 226

Abstract

Read online

The fast-growing tree, eastern cottonwood (Populus deltoides), currently is being planted to catalyze native forest restoration on degraded agricultural sites in the southeastern United States. Many of these restoration sites are appropriate for short rotation woody crop (SRWC) culture that addresses climate mitigation objectives, but information needed to optimize climate mitigation objectives through such plantings is limited. Therefore, we established a 10-year experiment on degraded agricultural land located in the Mississippi Alluvial Valley, USA, aiming to quantify the dynamics of aboveground carbon (AGC) accumulation in a cottonwood planting of four replicated spacing levels (3.7 × 3.7 m, 2.7 × 1.8 m, 2.1 × 0.8 m, and (0.8 + 1.8) × 0.8 m) aligned with SRWC systems targeting various ecosystem services. Annual sampling revealed a substantial range in increments of AGC and year 10 carbon stocks among stands of different densities. Mean annual increments for AGC (MAIAGC) were similar for the two tightest spacing levels, peaking higher than for the other two spacings at about 7.5 Mg ha−1 y−1 in year 7. Year 10 AGC ranged between 22.3 Mg ha−1 for stands spaced 3.7 × 3.7 m and 70.1 Mg ha−1 for stands of the two tightest spacings, leading us to conclude that a spacing between 2.1 × 0.8 m and 2.7 × 1.8 m would maximize aboveground carbon stocks through year 10 on sites of similar agricultural degradation. Increments and accumulation of AGC on the degraded site trended lower than values reported from more productive sites but illustrate that quick and substantial transformation of the carbon stock status of degraded agricultural sites can be achieved with the application of SRWCs to restore forests for climate mitigation and other compatible ecosystem services.

Keywords