Breast Cancer Research (Oct 2023)
Exosomal Linc00969 induces trastuzumab resistance in breast cancer by increasing HER-2 protein expression and mRNA stability by binding to HUR
Abstract
Abstract Background Breast cancer (BC) is the most common malignant disease in female patients worldwide. In HER-2+ BC patients, trastuzumab therapy is associated with a better prognosis. However, many HER-2+ BC patients experience recurrence or metastasis because of trastuzumab resistance. The mechanisms underlying trastuzumab resistance remain unclear. Recently, substantial evidence has suggested that exosomes are associated with drug resistance, and lncRNAs have attracted increasing attention due to their potential role in the regulation of trastuzumab resistance. Methods We collected the exosomes from the plasma of BC patients with and without trastuzumab resistance, sequenced the whole transcriptomes, identified differentially expressed lncRNAs, and identified lncRNA Linc00969, which was overexpressed in trastuzumab-resistant patients. Then, we established trastuzumab-resistant BC cell lines and explored the role of exosomal Linc00969 in trastuzumab resistance in vitro and in vivo by silencing or overexpressing Linc00969 and performing a series of functional analyses. Furthermore, to explore the mechanism by which exosomal Linc00969 contributes to trastuzumab resistance, we measured changes in HER-2, HUR and autophagy-related protein expression levels after regulating Linc00969 expression. In addition, we investigated the interaction between Linc00969 and HUR via pull-down and RIP assays and the effect of HUR on HER-2 expression and trastuzumab resistance after blocking HUR. Results We first found that exosomal lncRNA Linc00969 was overexpressed in trastuzumab-resistant BC patients and that exosome-mediated Linc00969 transfer could disseminate trastuzumab resistance in BC. Then, we found that silencing Linc00969 could reduce trastuzumab resistance and that overexpressing Linc00969 could enhance trastuzumab resistance. Furthermore, our results showed that Linc00969 could upregulate HER-2 expression at the protein level and maintain the stability of HER-2 mRNA by binding to HUR. Additionally, we found that exosomal Linc00969 could regulate trastuzumab resistance by inducing autophagy. Conclusions In this study, we first identified that exosomal lncRNA Linc00969 could induce trastuzumab resistance by increasing HER-2 protein expression and mRNA stability by binding to HUR, and Linc00969 might also be involved in trastuzumab resistance by inducing autophagy. Our results elucidate a novel mechanism underlying trastuzumab resistance, and Linc00969 might be a new target for improving the treatment of HER-2+ BC patients.
Keywords