Complexity (Jan 2020)
Online Parameter Identification of the Lithium-Ion Battery with Refined Instrumental Variable Estimation
Abstract
Refined Instrumental Variable (RIV) estimation is applied to online identify the parameters of the Equivalent Circuit Model (ECM) for Lithium-ion (Li-ion) battery in this paper, which enables accurate parameters estimation with the measurement noise. Since the traditional Recursive Least Squares (RLS) estimation is extremely sensitive to the noise, the parameters in the ECM may fail to converge to their true values under the measurement noise. The RIV estimation is implemented in a bootstrap form, which alternates between the estimation in the system model and the noise model. The Box-Jenkins model of the Li-ion battery transformed from the two RC ECM is selected as the transfer function model for the RIV estimation in this paper. The errors of the two RC ECM are independently generated by the residual of high-order Auto Regressive (AR) model estimation. With the benefit of a series of auxiliary models, the data filtering technology can prefilter the measurement and increase the robustness of the parameters against the noise. Reasonable parameters are possible to be obtained regardless of the noise in the measurement by RIV. Simulation and experimental tests on a LiFePO4 battery validate the efficiency of RIV for parameter online identification compared with traditional RLS.