Plants (Aug 2022)
Alleviation of Herbicide Toxicity in <i>Solanum lycopersicum</i> L.—An Antioxidant Stimulation Approach
Abstract
Application of the herbicide glyphosate in crops is a common practice among farmers around the world. Tomato is one of the crops that are treated with glyphosate to fight weed growth and loss of crop. However, tomato plants often show phytotoxic effects from glyphosate. In this study, the ability of pongamia oil derived from Pongamia pinnata (known also as Millettia pinnata) tree to alleviate the herbicide glyphosate toxicity effects in tomato (S.lycopersicum L. cv. Micro-tom) plants was tested. Tomato plants were treated with a mixture of a dose of (GLY) glyphosate (10 mg kg−1) and different doses of pongamia oil (PO) foliar spray (5, 10, 50, and 100 mM) and compared with the herbicide or oil control (glyphosate 10 mg kg−1 or pongamia oil PO 50 mM). Some morphological features, non-enzymatic and enzymatic antioxidants, and gene expression were observed. Glyphosate-treated plants sprayed with PO 50 mM (GLY + PO 50) showed increased root biomass (0.28 g-p ≤ 0.001), shoot biomass (1.2 g-p ≤ 0.01), H2O2 (68 nmol/g), and the activities of superoxide dismutase (SOD; 40 mg-p ≤ 0.001), catalase (CAT; 81.21 mg-p ≤ 0.05), ascorbate peroxidase (APX; 80 mg-p ≤ 0.01) and glutathione reductase (GR; 53 min/mg-F4,20 = 15.88, p ≤ 0.05). In contrast, these plants showed reduced contents of Malondialdehyde (MDA; 30 nmol/g-F4,20 = 18.55, p ≤ 0.01), O2 (0.6 Abs/g), Prolne (Pro; 345 µg/g), Glutathine (GSH; 341 nmol/mg-p ≤ 0.001), ascorbate (AsA; 1.8 µmol/gm), ascorbic acid (AA; 1.62 mg-p ≤ 0.05) and dehydroascorbate (DHAR; 0.32 mg p ≤ 0.05). The gene expression analysis was conducted for seven oxidative stress related genes besides the house-keeping gene Actin as a reference. The gene CYP1A1450 showed the highest mRNA expression level (6.8 fold ± 0.4) in GLY-treated tomato plants, whereas GLY-treated plants + PO 50 showed 2.9 fold. The study concluded that foliar spray of 50 mM pongamia oil alleviated the toxic effects of glyphosate on tomato plants in the form of increased root and shoot biomass, SOD, CAT, APX, and GR activity, while reduced MDA, O2, Pro, GSH, AsA, AA, DHAR, and gene CYP1A1450 expression.
Keywords