iScience (Dec 2023)

Deep learning untangles the resistance mechanism of p53 reactivator in lung cancer cells

  • Soo Min Lee,
  • Younghyun Han,
  • Kwang-Hyun Cho

Journal volume & issue
Vol. 26, no. 12
p. 108377

Abstract

Read online

Summary: Tumor suppressor p53 plays a pivotal role in suppressing cancer, so various drugs has been suggested to upregulate its function. However, drug resistance is still the biggest hurdle to be overcome. To address this, we developed a deep learning model called AnoDAN (anomalous gene detection using generative adversarial networks and graph neural networks for overcoming drug resistance) that unravels the hidden resistance mechanisms and identifies a combinatorial target to overcome the resistance. Our findings reveal that the TGF-β signaling pathway, alongside the p53 signaling pathway, mediates the resistance, with THBS1 serving as a core regulatory target in both pathways. Experimental validation in lung cancer cells confirms the effects of THBS1 on responsiveness to a p53 reactivator. We further discovered the positive feedback loop between THBS1 and the TGF-β pathway as the main source of resistance. This study enhances our understanding of p53 regulation and offers insights into overcoming drug resistance.

Keywords