Micromachines (Mar 2024)

A Novel Thin-Layer Flow Cell Sensor System Based on BDD Electrode for Heavy Metal Ion Detection

  • Danlin Xiao,
  • Junfeng Zhai,
  • Zhongkai Shen,
  • Qiang Wang,
  • Shengnan Wei,
  • Yang Li,
  • Chao Bian

DOI
https://doi.org/10.3390/mi15030363
Journal volume & issue
Vol. 15, no. 3
p. 363

Abstract

Read online

An electrochemical sensor based on a thin-layer flow cell and a boron-doped diamond (BDD) working electrode was fabricated for heavy metal ions determination using anodic stripping voltammetry. Furthermore, a fluidic automatic detection system was developed. With the wide potential window of the BDD electrode, Zn2+ with high negative stripping potential was detected by this system. Due to the thin-layer and fluidic structure of the sensor system, the electrodepositon efficiency for heavy metal ions were improved without using conventional stirring devices. With a short deposition time of 60 s, the system consumed only 0.75 mL reagent per test. A linear relationship for Zn2+ determination was displayed ranging from 10 μg/L to 150 μg/L with a sensitivity of 0.1218 μA·L·μg−1 and a detection limit of 2.1 μg/L. A high repeatability was indicated from the relative standard deviation of 1.60% for 30 repeated current responses of zinc solution. The system was applied to determine Zn2+ in real water samples by using the standard addition method with the recoveries ranging from 92% to 118%. The system was also used for the simultaneous detection of Zn2+, Cd2+, and Pb2+. The detection results indicate its potential application in on-site monitoring for mutiple heavy metal ions.

Keywords