An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise
Jose A.L. Calbet,
Saúl Martín-Rodríguez,
Marcos Martin-Rincon,
David Morales-Alamo
Affiliations
Jose A.L. Calbet
Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe “Físico” (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806 Oslo, Norway; Corresponding author. Departamento de Educación Física, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Canary Islands, Spain.
Saúl Martín-Rodríguez
Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe “Físico” (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
Marcos Martin-Rincon
Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe “Físico” (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
David Morales-Alamo
Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe “Físico” (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
During exercise, muscle ATP demand increases with intensity, and at the highest power output, ATP consumption may increase more than 100-fold above the resting level. The rate of mitochondrial ATP production during exercise depends on the availability of O2, carbon substrates, reducing equivalents, ADP, Pi, free creatine, and Ca2+. It may also be modulated by acidosis, nitric oxide and reactive oxygen and nitrogen species (RONS). During fatiguing and repeated sprint exercise, RONS production may cause oxidative stress and damage to cellular structures and may reduce mitochondrial efficiency. Human studies indicate that the relatively low mitochondrial respiratory rates observed during sprint exercise are not due to lack of O2, or insufficient provision of Ca2+, reduced equivalents or carbon substrates, being a suboptimal stimulation by ADP the most plausible explanation. Recent in vitro studies with isolated skeletal muscle mitochondria, studied in conditions mimicking different exercise intensities, indicate that ROS production during aerobic exercise amounts to 1-2 orders of magnitude lower than previously thought. In this review, we will focus on the mechanisms regulating mitochondrial respiration, particularly during high-intensity exercise. We will analyze the factors that limit mitochondrial respiration and those that determine mitochondrial efficiency during exercise. Lastly, the differences in mitochondrial respiration between men and women will be addressed.