AIMS Mathematics (Jul 2024)

New hybrid model for nonlinear systems via Takagi-Sugeno fuzzy approach

  • Anouar Ben Mabrouk,
  • Abdulaziz Alanazi,
  • Zaid Bassfar ,
  • Dalal Alanazi

DOI
https://doi.org/10.3934/math.20241128
Journal volume & issue
Vol. 9, no. 9
pp. 23197 – 23220

Abstract

Read online

Mathematical models, especially complex nonlinear systems, are always difficult to analyze and synthesize, and researchers need effective and suitable control methods to address these issues. In the present work, we proposed a hybrid method that combines the well-known Takagi-Sugeno fuzzy model with wavelet decomposition to investigate nonlinear systems characterized by the presence of mixed nonlinearities. Here, one nonlinearity is super-linear and convex, and other is sub-linear, concave, and singular at zero, which leads to difficulties in the analysis, as is known in PDE theory. Linear and polynomial fuzzy models were combined with wavelets to ensure an improvement in both methods for investigating such problems. The results showed a high performance compared with existing methods via error estimates and Lyapunov theory of stability. The model was applied to a prototype nonlinear Schrödinger dynamical system.

Keywords