Current Advances in the Biosynthesis, Metabolism, and Transcriptional Regulation of α-Tomatine in Tomato
Yuanyuan Liu,
Hanru Hu,
Rujia Yang,
Zhujun Zhu,
Kejun Cheng
Affiliations
Yuanyuan Liu
Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
Hanru Hu
Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
Rujia Yang
Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
Zhujun Zhu
Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
Kejun Cheng
Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China
Steroid glycoalkaloids (SGAs) are a class of cholesterol-derived metabolites commonly found in the Solanaceae plants. α-Tomatine, a well-known bitter-tasting compound, is the major SGA in tomato, accumulating extensively in all plant tissues, particularly in the leaves and immature green fruits. α-Tomatine exhibits diverse biological activities that contribute to plant defense against pathogens and herbivores, as well as conferring certain medicinal benefits for human health. This review summarizes the current knowledge on α-tomatine, including its molecular chemical structure, physical and chemical properties, biosynthetic and metabolic pathways, and transcriptional regulatory mechanisms. Moreover, potential future research directions and applications of α-tomatine are also discussed.