Nanomaterials (Apr 2022)

Cost-Effective and Selective Fluorescent Chemosensor (Pyr-NH@SiO<sub>2</sub> NPs) for Mercury Detection in Seawater

  • Shahid Ali,
  • Muhammad Mansha,
  • Nadeem Baig,
  • Safyan Akram Khan

DOI
https://doi.org/10.3390/nano12081249
Journal volume & issue
Vol. 12, no. 8
p. 1249

Abstract

Read online

The release of mercury into the environment has adverse effects on humans and aquatic species, even at very low concentrations. Pyrene and its derivatives have interesting fluorescence properties that can be utilized for mercury (Hg2+) ion sensing. Herein, we reported the highly selective pyrene-functionalized silica nanoparticles (Pyr-NH@SiO2 NPs) for chemosensing mercury (Hg2+) ions in a seawater sample. The Pyr-NH@SiO2 NPs were synthesized via a two-step protocol. First, a modified Stöber method was adopted to generate amino-functionalized silica nanoparticles (NH2@SiO2 NPs). Second, 1-pyrenecarboxylic acid was coupled to NH2@SiO2 NPs using a peptide coupling reaction. As-synthesized NH2@SiO2 NPs and Pyr-NH@SiO2 NPs were thoroughly investigated by 1H-NMR, FTIR, XRD, FESEM, EDS, TGA, and BET surface area analysis. The fluorescent properties were examined in deionized water under UV-light illumination. Finally, the developed Pyr-NH@SiO2 NPs were tested as a chemosensor for Hg2+ ions detection in a broad concentration range (0–50 ppm) via photoluminescence (PL) spectroscopy. The chemosensor can selectively detect Hg2+ ions in the presence of ubiquitous ions (Na+, K+, Ca2+, Mg2+, Ba2+, Ag+, and seawater samples). The quenching of fluorescence properties with Hg2+ ions (LOD: 10 ppb) indicates that Pyr-NH@SiO2 NPs can be effectively utilized as a promising chemosensor for mercury ion detection in seawater environments.

Keywords