World Journal of Surgical Oncology (May 2019)
Analysis of potential key genes in very early hepatocellular carcinoma
Abstract
Abstract Background Hepatocellular carcinoma (HCC) is the major pathological type of primary liver cancer, one of the leading causes of cancer death worldwide. In addition, the long-term survival rates of HCC still remain low. Therefore, we attempted to identify the potential key genes in the occurrence of HCC by comparing the expression profiles of very early HCC tissue samples with that of chronic cirrhotic tissue samples by integrating the bioinformatics analysis in this study. Methods Gene expression profiles of 19 very early HCC and 19 cirrhotic tissue samples were selected from GSE63898. Differentially expressed genes (DEGs) were also identified by using online tool GEO2R. Furthermore, the GO and KEGG enrichment analysis of the DGEs were conducted on DAVID datasets. Then a protein–protein interaction (PPI) network was constructed and the modules were analyzed based on STRING database and Cytoscape software. The hub genes were screened by applying the cytoHubba plugin and then analyzed with the Kaplan Meier plotter. Results A total of 118 DEGs were identified between very early HCC and cirrhotic tissue samples. These DGEs were strongly associated with several biological processes, such as negative regulation of growth and p53 signaling pathway. A PPI network was constructed and top eight hub genes, including CDKN3, CDK1, CCNB1, TOP2A, CCNA2, CCNB2, PRC1, and RRM2, were determined. High expressions of CDK1, CCNB1, TOP2A, CCNA2, PRC1, RRM2, CDKN3, and CCNB2 were associated with poorer overall survivals (OS) in HCC patients. Conclusion We had compared the expression profiles between the very early HCC and cirrhotic tissue samples by using bioinformatics analysis tools, which might help us better to understand the molecular mechanism of the initiation of HCC and even to find novel targets for HCC therapy.
Keywords