Lontar Komputer (Sep 2018)

Implementation Equal-Width Interval Discretization in Naive Bayes Method for Increasing Accuracy of Students' Majors Prediction

  • Alfa Saleh,
  • Fina Nasari

DOI
https://doi.org/10.24843/LKJITI.2018.v09.i02.p05

Abstract

Read online

The Selection of majors for students is a positive step that is done to focus students in accordance with their potential, it is considered important because with the majors, students are expected to develop academic ability according to the field of interest. In previous research, Naive Bayes method has been tested to classify the student’s department based on the criteria that support the case study on Private Madrasah Aliyah PAB 6 Helvetia students and the accuracy of the test from 100 student data is 90%. in this study, the researcher developed a previously used method by applying an equal-width interval discretization that would transform numerical or continuous criteria into a categorical criteria with a predetermined k value, different k values ??would be tested to find the best accuracy value. from the 120-student data that have been tested, it is proved that the result of the classification of the application of equal-width interval discretization on the Naive Bayes method with the value of k = 8 is better and increased the accuracy value 91.7% to 93.3%.