Invertebrate Survival Journal (Jun 2004)

Signaling pathways implicated in the cellular innate immune responses of Drosophila

  • AJ Nappi,
  • L Kohler,
  • M Mastore

Journal volume & issue
Vol. 1, no. 1
pp. 5 – 33

Abstract

Read online

The phylogenetically conserved innate immune systems of insects and other invertebrates employblood cells (hemocytes) that are functionally reminiscent of vertebrate macrophages, attesting to theimportance of phagocytosis and other cell-mediated responses in eliminating various pathogens. Receptorligandbinding activates signaling cascades that promote collaborative cellular interactions and theproduction of pathogen-specific cytotoxic responses. Numerous comparative genetic and molecularstudies have shown the cytotoxic effector responses made by cells of the innate immune system to beevolutionarily conserved. Comparative analyses of genomic sequences provide convincing evidence thatmany of the biochemical processes manifested by immune-activated hemocytes are similar to thosemade by activated vertebrate macrophages. Included in this genomic repertoire are enzymes associatedwith reactive intermediates of oxygen and nitrogen, cellular redox homeostasis, and apoptosis, thesynthesis of extracellular matrix, cell adhesion and pattern recognition molecules. Surprisingly, little isknown of the types of cytotoxic molecules produced by invertebrate hemocytes, and the signaling andtranscriptional events associated with their collaborative interactions when engaging pathogens andparasites. This review examines certain aspects of the blood cell-mediated defense responses ofDrosophila, and some of the signaling pathways that have been implicated in hemocyte activation,differentiation, and the regulation of hematopoiesis.

Keywords