Cell Reports (Jun 2024)

A brain-derived insulin signal encodes protein satiety for nutrient-specific feeding inhibition

  • Xiaoyu Li,
  • Yang Yang,
  • Xiaobing Bai,
  • Xiaotong Wang,
  • Houqi Tan,
  • Yanbo Chen,
  • Yan Zhu,
  • Qili Liu,
  • Mark N. Wu,
  • Yan Li

Journal volume & issue
Vol. 43, no. 6
p. 114282

Abstract

Read online

Summary: The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.

Keywords