Lithosphere (Mar 2024)

Data-Driven Dynamic Inversion Method for Complex Fractures in Unconventional Reservoirs

  • Ruixue Jia,
  • Xiaoming Li,
  • Xiaoyong Ma,
  • Liang Zhu,
  • Yangdong Guo,
  • Xiaoping Song,
  • Pingde Wang,
  • Jiantao Wang

DOI
https://doi.org/10.2113/2024/lithosphere_2023_347
Journal volume & issue
Vol. 2024, no. 1

Abstract

Read online

Hydraulic fracturing is a crucial technology for enhancing the recovery of oil and gas from unconventional reservoirs. Accurately describing fracture morphology is essential for accurately predicting production dynamics. This article proposes a new fracture inversion model based on dynamic data-driven methods, which is different from the conventional linear elastic fracture mechanics model. This method eliminates the need to consider complex mechanical mechanisms, resulting in faster simulation speeds. In the model, the fracture morphology is constrained by combining microseismic data and fracturing construction data, and the fracture tip propagation domain is introduced to characterize the multi-directionality of fracture propagation. The simulated fracture exhibits a multi-branch fracture network morphology, aligning more closely with geological understanding. In addition, the influence of microseismic signal intensity on the direction of fracture propagation is considered in this study. The general stochastic approximation (GSA) algorithm is employed to optimize the direction of fracture propagation. The proposed method is applied to both the single-stage fracturing model and the whole well fracturing model. The research findings indicate that in the single-stage fracturing model, the inverted fracture morphology aligns closely with the microseismic data, with a fitting rate of the fracturing construction curve exceeding 95%, and a microseismic data fitting rate exceeding 93%. In the whole well fracturing model, a total of 18 sections were inverted. The fitting rate between the overall fracture morphology and the microseismic data reached 90%. The simulation only took 5 minutes, demonstrating high computational efficiency and meeting the needs of large-scale engineering fracture simulation. This method can effectively support geological modeling and production dynamic prediction.