Entropy (Aug 2022)
Dynamics of Information Flow between the Chinese A-Share Market and the U.S. Stock Market: From the 2008 Crisis to the COVID-19 Pandemic Period
Abstract
The relationship between the Chinese market and the US market is widely concerned by researchers and investors. This paper uses transfer entropy and local random permutation (LRP) surrogates to detect the information flow dynamics between two markets. We provide a detailed analysis of the relationship between the two markets using long-term daily and weekly data. Calculations show that there is an asymmetric information flow between the two markets, in which the US market significantly affects the Chinese market. Dynamic analysis based on weekly data shows that the information flow evolves, and includes three significant periods between 2004 and 2021. We also used daily data to analyze the dynamics of information flow in detail over the three periods and found that changes in the intensity of information flow were accompanied by major events affecting the market, such as the 2008 financial crisis and the COVID-19 pandemic period. In particular, we analyzed the impact of the S&P500 index on different industry indices in the Chinese market and found that the dynamics of information flow exhibit multiple patterns. This study reveals the complex information flow between two markets from the perspective of nonlinear dynamics, thereby helping to analyze the impact of major events and providing quantitative analysis tools for investment practice.
Keywords