Metals (Mar 2018)

Agglomeration Behavior of Non-Metallic Particles on the Surface of Ca-Treated High-Carbon Liquid Steel: An In Situ Investigation

  • Yasuhiro Tanaka,
  • Farshid Pahlevani,
  • Veena Sahajwalla

DOI
https://doi.org/10.3390/met8030176
Journal volume & issue
Vol. 8, no. 3
p. 176

Abstract

Read online

The agglomeration behavior of non-metallic inclusion is a critical phenomenon that needs to be controlled as it has a direct relationship with the performance of produced steel. Although the agglomerates can be potential points for serious defects in every grade of steel, they are likely to be more serious in high-carbon steel due to the low ductility of these grades of steels as well as their usage in severe conditions. Confocal scanning laser microscopes (CSLM) have been used by different researchers to investigate the agglomeration behavior of non-metallic particles at the interface of liquid steel and Ar gas, in situ. In recent decades, the agglomeration of Al2O3 particle in and on the surface of low-carbon steel has been widely investigated. However, there are very few studies focussing on non-Al2O3 inclusions which are included in a Ca-treated high-carbon steel. In this study, the agglomeration behaviors of sulfide/sulfide and sulfide/oxide particles on the surface of liquid high-carbon steel have been investigated in detail using CSLM. Agglomerations on the liquid surface are governed by capillary forces similar to the Al2O3 particle but this study demonstrates that agglomeration forces among non-Al2O3 particles on the surface of re-melted high-carbon samples are lower than pure-Al2O3 on the surface of low-carbon steel. Despite this, they show similar or longer acting lengths than pure-Al2O3.

Keywords