Immuno (Jan 2022)

Ezrin and Radixin Differentially Modulate Cell Surface Expression of Programmed Death Ligand-1 in Human Pancreatic Ductal Adenocarcinoma KP-2 Cells

  • Takuro Kobori,
  • Rina Doukuni,
  • Honami Ishikawa,
  • Yui Ito,
  • Rie Okada,
  • Chihiro Tanaka,
  • Mayuka Tameishi,
  • Yoko Urashima,
  • Takuya Ito,
  • Tokio Obata

DOI
https://doi.org/10.3390/immuno2010006
Journal volume & issue
Vol. 2, no. 1
pp. 68 – 84

Abstract

Read online

Immune checkpoint blockade (ICB) therapies, such as immune checkpoint inhibitors against programmed death ligand-1 (PD-L1), have not been successful in treating patients with pancreatic ductal adenocarcinoma (PDAC). Despite the critical role of PD-L1 in various types of cancers, the regulatory mechanism of PD-L1 expression on the cell surface of PDAC is poorly understood. Therefore, uncovering potential modulators of cell surface localisation of PD-L1 may provide a new strategy to improve ICB therapy in patients with PDAC. Here, we examined the role of ezrin/radixin/moesin (ERM) family scaffold proteins that crosslink transmembrane proteins with the actin cytoskeleton in the surface localisation of PD-L1 in KP-2 cells, a human PDAC cell line. Our results demonstrated the abundant protein expression of PD-L1, ezrin, and radixin, but not moesin, as well as their colocalisation in the plasma membrane. Interestingly, immunoprecipitation analysis detected the molecular interaction of PD-L1 with ezrin and radixin. Moreover, gene silencing of ezrin moderately decreased the mRNA and cell surface expression of PD-L1, while that of radixin greatly decreased the surface expression of PD-L1 without altering the mRNA levels. Thus, radixin and ezrin differentially modulate the cell surface localisation of PD-L1 in KP-2 cells, highlighting a potential therapeutic target to improve the current ICB therapy in PDAC.

Keywords