Data on the verification and validation of segmentation and registration methods for diffusion MRI
Oscar Esteban,
Dominique Zosso,
Alessandro Daducci,
Meritxell Bach-Cuadra,
María J. Ledesma-Carbayo,
Jean-Philippe Thiran,
Andres Santos
Affiliations
Oscar Esteban
Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain; Corresponding author at: Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
Dominique Zosso
Department of Mathematics, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
Alessandro Daducci
Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Meritxell Bach-Cuadra
Department of Radiology, CIBM, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
María J. Ledesma-Carbayo
Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
Jean-Philippe Thiran
Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Andres Santos
Biomedical Image Technologies (BIT), ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
The verification and validation of segmentation and registration methods is a necessary assessment in the development of new processing methods. However, verification and validation of diffusion MRI (dMRI) processing methods is challenging for the lack of gold-standard data. The data described here are related to the research article entitled “Surface-driven registration method for the structure-informed segmentation of diffusion MR images” [1], in which publicly available data are used to derive golden-standard reference-data to validate and evaluate segmentation and registration methods in dMRI. Keywords: Neuroimage, Image processing, MRI methods, Diffusion MRI