AIMS Geosciences (Sep 2024)

Reservoir geophysical monitoring supported by artificial general intelligence and Q-Learning for oil production optimization

  • Paolo Dell'Aversana

DOI
https://doi.org/10.3934/geosci.2024033
Journal volume & issue
Vol. 10, no. 3
pp. 641 – 661

Abstract

Read online

Artificial general intelligence (AGI), or strong AI, aims to replicate human-like cognitive abilities across diverse tasks and domains, demonstrating adaptability and learning like human intelligence. In contrast, weak AI refers to systems designed for specific tasks, lacking the broad cognitive flexibility of AGI. This paper introduces a novel approach to optimize oil production by integrating fundamental principles of AGI with geophysical data inversion and continuous monitoring techniques. Specifically, the study explored how AGI-inspired algorithms, combined with established reinforcement learning (RL) techniques, can enhance borehole electric/electromagnetic monitoring and reservoir fluid mapping technology. This integration aims to mitigate the risk of unwanted water invasion in production wells while optimizing oil extraction. The proposed methodology leverages real-time geophysical data analysis and automated regulation of oil production. The paper begins by outlining the key features of AGI and RL, and then discusses their application in electric/electromagnetic monitoring to define optimal production policies. The effectiveness of this approach was verified through synthetic tests, showing significant improvements in production efficiency, resource recovery, and environmental impact reduction.

Keywords