Economic Analysis of Thermal–Catalytic Process of Palm Oil (<em>Elaeis guineesensis,</em> Jacq) and Soap Phase Residue from Neutralization Process of Palm Oil (<em>Elaeis guineensis</em>, Jacq)
Anderson Rocha Amaral,
Lucas Pinto Bernar,
Caio Campos Ferreira,
Anderson Mathias Pereira,
Wenderson Gomes Dos Santos,
Lia Martins Pereira,
Marcelo Costa Santos,
Fernanda Paula da Costa Assunção,
Neyson Martins Mendonça,
José Almir Rodrigues Pereira,
Sílvio Alex Pereira da Mota,
Andréia de Andrade Mâncio,
Sergio Duvoisin Junior,
Luiz Eduardo Pizarro Borges,
Nélio Teixeira Machado,
Douglas Alberto Rocha de Castro
Affiliations
Anderson Rocha Amaral
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Lucas Pinto Bernar
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Caio Campos Ferreira
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Anderson Mathias Pereira
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Wenderson Gomes Dos Santos
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Lia Martins Pereira
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Marcelo Costa Santos
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Fernanda Paula da Costa Assunção
Graduate Program of Civil Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Neyson Martins Mendonça
Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil
José Almir Rodrigues Pereira
Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa N° 1, Belém 66075-900, Brazil
Sílvio Alex Pereira da Mota
Graduate Program of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Folha 31, Quadra 7, Lote Especial—Nova Marabá, Marabá/PA 68507-590, Brazil
Andréia de Andrade Mâncio
Graduate Program of Chemistry, Universidade Federal do Sul e Sudeste do Pará, Folha 31, Quadra 7, Lote Especial—Nova Marabá, Marabá/PA 68507-590, Brazil
Sergio Duvoisin Junior
Faculty of Chemical Engineering, Universidade do Estado do Amazonas-UEA, Avenida Darcy Vargas N° 1200, Manaus 69050-020, Brazil
Luiz Eduardo Pizarro Borges
Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering, Instituto Militar de Engenharia-IME, Praça General Tibúrcio N° 80, Rio de Janeiro 22290-270, Brazil
Nélio Teixeira Machado
Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa N° 1, Belém 66075-110, Brazil
Douglas Alberto Rocha de Castro
Centro Universitário Luterano de Manaus—CEULM/ULBRA, Avenida Carlos Drummond de Andrade N° 1460, Manaus 69077-730, Brazil
Palm oil is, from an economic, environmental, and social point of view, a vegetable oil with great potential and the state of Pará-Brazil is Brazil’s great producer. In addition, soap phase residue or palm oil neutralization sludge (PONS), a byproduct of the neutralization step of the chemical refinement of palm oil, is produced, posing a huge problem for waste disposal and management in the production process of refined palm oil (RPO). In this context, this work aims to systematically investigate the economic analysis of the thermal–catalytic process of crude palm oil (CPO) and palm oil neutralization sludge (PONS). The thermocatalytic processes of CPO and PONS carried out at pilot scale and their economic feasibility were analyzed. The yields of biofuels produced by fractional distillation were also presented. The physicochemical properties of CPO and PONS, as well as those of organic liquid products obtained by the thermal–catalytic process of CPO and PONS were taken into account in the economic analysis. In addition, the chemical composition organic liquid products obtained by thermal–catalytic process of CPO and PONS, as well as its distillation fractions (green gasoline, green kerosene, green light diesel and heavy diesel), used as key factors/indicators on the economic analysis. The analysis of the key factors/indicators from the thermocatalytic processes of CPO and PONS showed economic viability for both crude palm oil (Elaeis guineensis, Jacq) and palm oil neutralization sludge. The minimum fuel selling price (MFSP) obtained in this work for the biofuels was 1.59 USD/L using crude palm oil (CPO) and 1.34 USD/L using palm oil neutralization sludge (PONS). The best breakeven point obtained was of 1.24 USD/L considering the PONS. The sensibility analysis demonstrated that the pyrolysis and distillation yields are the most important variables that affect the minimum fuel-selling price (MFSP) in both economic analyses.