Poultry Science (Oct 2024)
Betaine and feed restriction as potential mitigation strategies against heat stress in two strains of laying hens
Abstract
ABSTRACT: Climate change is increasingly manifesting in temperate regions. Laying hens are highly sensitive to heat stress and mitigation strategies should be implemented to reduce the negative effects. The goal of this experiment was to evaluate the effects of betaine in drinking water (0.55 g/L) and 4 h feed restriction during peak heat stress on laying performance, egg quality, blood gas parameters, body temperature (Tb), and oxidative stress in 2 different breeds of laying hens. Therefore, 448 ISA Brown hens (25 wk) and 448 Lohmann LSL classic laying hens (26 wk) were housed in 128 cages (7 hens/cage). Thermoneutral (TN) data was collected for 21 d before cyclic heat stress (HS) (21d; 32 ± 2°C; 6 h daily). During HS, hens were divided into 4 treatments: 1) feed restriction (FR), 2) betaine supplementation in drinking water (BET), 3) feed restriction and betaine supplementation in drinking water (FR-BET), or 4) control (CON). The effects were evaluated after 1 wk of HS (acute heat stress; AHS) and 3 wk of HS (chronic heat stress; CHS). Laying rate and egg mass (EM) diminished during CHS but decreased more in white than brown hens (2.78% and 1.94%; −1.57% and −0.81%, respectively; P = 0.004) and remained unaltered by BET or FR. During AHS, average daily feed intake (ADFI) increased compared to TN, but the increase was higher in white than brown hens (6.36% and 2.62%, respectively; P = 0.001). Egg shell quality deteriorated during AHS and CHS, but was most affected in white hens, FR or BET did not impact this. Blood pCO2, HCO3− and base excess significantly decreased during AHS and CHS, but pH and iCa were unaltered. Blood glucose increased in white hens during AHS compared to TN (P < 0.001), while plasma malondialdehyde increased in brown hens (P < 0.001). Results indicated that laying hens experienced HS, but breed differences were observed and white hens were generally most affected. FR affected feed conversion ratio negatively during CHS. However, FR and BET could not improve laying performance, egg quality, Tb, or blood parameters during HS.