Heliyon (Jun 2024)
Effects of washing with boric acid solutions on residual boric acid content, microbiological load, and quality of fresh-cut spinach
Abstract
Insufficient disinfection of fresh-cut spinach poses significant health risks, along with potential issues like odor, color changes, and softening during short-term storage. To address these challenges, boric acid solutions were explored as an alternative to chlorine washes, which are known to produce toxic compounds. Among various concentrations, 1 % boric acid exhibited the most effective microbial inactivation, leading to substantial reductions in total mesophilic aerobic bacteria, total yeast and mold, and Enterobacteriaceae counts, with reductions of 1.64, 1.38, and 1.77 logs, respectively. Additionally, washing spinach leaves with this solution for 1 min maintained quality parameters, with enhanced antioxidant activity (55.26 mg kg−1 Trolox equivalent), increased total phenolic content (1214.06 mg kg−1 gallic acid equivalent), retention of chlorophyll a (839.16 mg kg−1), chlorophyll b (539.61 mg kg−1) and ascorbic acid content (264.72 mg kg−1). Mechanical properties such as puncture strength (1.81 N) and puncture distance (52.78 mm) also showed favorable outcomes, alongside optimal moisture content at 89.81 %. Notably, residual boric acid content was lowest in spinach leaves (1252.49 mg kg−1) and highest in the wash water (53.88 mg kg−1) after treatment. Scanning electron microscopy images demonstrated maintained tissue integrity, while Hunter Lab readings indicated minimal color changes post-washing. Additionally, sensory evaluations and various physicochemical analyses further supported the efficacy of boric acid washing. Consequently, washing spinach leaves with a 1 % boric acid solution for 1 min yielded favorable results across multiple quality parameters. These findings suggest the potential of boric acid as a safe and effective alternative disinfectant in the fresh-cut produce industry, highlighting its practical implications for food safety and quality. Future research should focus on exploring long-term effects and optimizing washing protocols for broader applications.