هوش محاسباتی در مهندسی برق (Jun 2023)
Bad Data Detection in Electrical Grid’s State Estimation due to Cyber Attack on Measurements Using DRGP and GSR algorithms
Abstract
Nowadays, using telecommunication systems and advanced measuring devices underlies cyberattacks on electrical grids. Bad data injection and failure to detect it on time, cause drastic damage to the network. This paper presents a new method for bad data detection (BDD) in state estimating when a cyber attacker manipulates the important measurements. Therefore, the new attack index is defined by simultaneously manipulating the network parameters and injecting incorrect data into the measured values. For this purpose, considering the masking and swamping effect, the diagnostic robust generalized potential (DRGP) algorithm detected and isolated high-leverage measurements installed in important locations from low-leverage measurements. Then, the state estimation process performs using low-leverage measurements. The Generalized Studentized Residual (GSR) algorithm detects bad data. With simultaneous manipulation of network parameters and measurement values, conventional BDD methods are unable to detect an attack. To evaluate the performance of the proposed method, they were implemented on the IEEE standard 14-bus network using MATLAB and Rstudio software. The simulation results show the ability of the proposed algorithm to detect a bad data attack.
Keywords