Aerul şi Apa: Componente ale Mediului (Mar 2024)

Raman Spectroscopy Techniques and Technology as a Tool in Environmental Water Analysis

  • Karlo MAŠKARIĆ,
  • Simona CÎNTĂ PÎNZARU,
  • Dănuţ-Alexandru DUMITRU,
  • Csilla MOLNAR,
  • Teodora Diana DRÎGLĂ,
  • Sanja TOMŠIĆ,
  • Ana BRATOŠ CETINIĆ

DOI
https://doi.org/10.24193/AWC2024_12
Journal volume & issue
Vol. 2024, no. 1
pp. 125 – 136

Abstract

Read online

Although the normal Raman scattering effect is inherently weak in diluted solutions such as environmental waters and dedicated enhancing techniques are already suitable for trace analysis of many harmful compounds, pollutants, toxins, and other species from aquatic environments, here we demonstrate how Raman spectroscopy techniques and technology can be effectively applied for environmental water analysis. Usually, normal Raman spectra of environmental waters, such as seawater, salt lakes waters show a weak-medium sulfate signal at about 981 cm-1 along with the stretching and bending modes of water. Rarely, weak bands attributable to dissolved CO2 and HCO3- are visible with weak intensity. We compared NIR-Raman and Raman spectra with visible laser excitation at 532 nm, which is resonant for carotenoids-containing microorganisms from water in bulk liquid or drop coating deposition samples, in multiple water samples from different spatial and temporal locations to include seawaters from Adriatic Sea (oligotrophic), Black Sea (eutrophic) and salt lakes waters (Cojocna Lakes (Lake1 and Lake2), Ursu Lake, Dead Sea). Valuable information can be obtained by combining resonance Raman spectroscopy using a Renishaw InVia Raman system coupled with a Leica research-grade microscope with a 532 nm laser with information from the FT-Raman spectra of the same waters. When photosynthetic microorganisms are abundant, in non-resonance conditions, a weak band of carotenoids is visible in FT-Raman or NIR-Raman spectra, suggesting photosynthetic microorganisms abundance. Such bulk waters show a high fluorescence background that sometimes covers any band, or reveal resonantly-enhance carotenoid bands arising from microorganisms under 532 nm excitation when Raman spectra of bulk liquid are tried. Drop coating deposition Raman (DCDR) technique could be more effectiv in rapidly assessing water droplet content under confocal micro-Raman spectroscopy. Both FT-Raman and microscopy techniques always record the sulfate ν1 (SO42-) Raman band at ~981 cm- 1 and water bands, δ(OH) at ~1637 cm-1 and ν(OH) Raman band at ~3218 cm-1 as shown in several comparative examples. Relative intensity ratio of ~981 cm- 1 and ~1637 cm-1 is proportional to sulfate concentration and can be used for quantitative sulfate analysis, based on an adequate calibration curve of sulfate solutions. Two sample tests for variance (F-test) revealed significant differences between relative intensity ratio between the Black Sea and Adriatic Sea samples when p<0.05. SO42- concentration variation is accompanied by other ion concentration variations and, thus, linked with salinity, conductivity and pH, which are related to climate events, and also influence the distribution of aquatic organisms. Thus, combined Raman spectroscopy techniques and technology for environmental water measurements can provide fast and useful information for monitoring programs and highlight large differences between oligotrophic and eutrophic seawaters or salt lakes and their spatial-temporal dynamic change.

Keywords