Polymers (Nov 2021)

Controlled Degradation of Commercial Resin for Meltblown Nonwoven Fabric Sheet Production

  • Yuya Sasai,
  • Yoshio Iizuka,
  • Kaho Osada,
  • Kentaro Taki

DOI
https://doi.org/10.3390/polym13223892
Journal volume & issue
Vol. 13, no. 22
p. 3892

Abstract

Read online

Manufacturing meltblown nonwoven fabrics requires special grades of resin with very low viscosity, which are not dealt with so much on market and cost quite high compared to the standard grades. We propose a high-shear rate processing method that can quickly and easily produce such low-viscosity resin from the commercial one without using organic peroxides. In this method, we apply high-shear stress to molten resin by using a high-shear extruder, which is a single screw extruder with high screw rotation speed, and the resin is thermally decomposed of its shear-induced heat which is quickly generated. We found that polypropylene with a value of melt flow rate over a thousand, which was required for the meltblown process, was produced from the standard grade with the high-shear extruder at the screw rotation speed of 3600 min−1 and the barrel temperature over 300 ∘C. Using the degradated polypropylene, a meltblown nonwoven fabric sheet was successfully fabricated. We also developed a numerical simulator of the high-shear extruder which can handle a wide range of the screw rotation speed and barrel temperature by the Nusselt number modulated with the operational conditions. The experimental values of the zero-shear viscosity and temperature at the exit of the extruder agreed well with the simulation results. Our high-shear rate processing method will enable us to quickly and easily produce various meltblown nonwoven fabric sheets at low costs.

Keywords