大数据 (Sep 2022)

联邦学习攻击与防御综述

  • 吴建汉,
  • 司世景,
  • 王健宗,
  • 肖京

DOI
https://doi.org/10.11959/j.issn.2096-0271.2022038
Journal volume & issue
Vol. 8, no. 5
pp. 12 – 32

Abstract

Read online

随着机器学习技术的广泛应用,数据安全问题时有发生,人们对数据隐私保护的需求日渐显现,这无疑降低了不同实体间共享数据的可能性,导致数据难以共享,形成“数据孤岛”。联邦学习可以有效解决“数据孤岛”问题。联邦学习本质上是一种分布式的机器学习,其最大的特点是将用户数据保存在用户本地,模型联合训练过程中不会泄露各参与方的原始数据。尽管如此,联邦学习在实际应用中仍然存在许多安全隐患,需要深入研究。对联邦学习可能受到的攻击及相应的防御措施进行系统性的梳理。首先根据联邦学习的训练环节对其可能受到的攻击和威胁进行分类,列举各个类别的攻击方法,并介绍相应攻击的攻击原理;然后针对这些攻击和威胁总结具体的防御措施,并进行原理分析,以期为初次接触这一领域的研究人员提供详实的参考;最后对该研究领域的未来工作进行展望,指出几个需要重点关注的方向,帮助提高联邦学习的安全性。

Keywords