Diagnostics (Jan 2023)

Texture Analysis in Uterine Cervix Carcinoma: Primary Tumour and Lymph Node Assessment

  • Paul-Andrei Ștefan,
  • Adrian Coțe,
  • Csaba Csutak,
  • Roxana-Adelina Lupean,
  • Andrei Lebovici,
  • Carmen Mihaela Mihu,
  • Lavinia Manuela Lenghel,
  • Marius Emil Pușcas,
  • Andrei Roman,
  • Diana Feier

DOI
https://doi.org/10.3390/diagnostics13030442
Journal volume & issue
Vol. 13, no. 3
p. 442

Abstract

Read online

The conventional magnetic resonance imaging (MRI) evaluation and staging of cervical cancer encounters several pitfalls, partially due to subjective evaluations of medical images. Fifty-six patients with histologically proven cervical malignancies (squamous cell carcinomas, n = 42; adenocarcinomas, n = 14) who underwent pre-treatment MRI examinations were retrospectively included. The lymph node status (non-metastatic lymph nodes, n = 39; metastatic lymph nodes, n = 17) was assessed using pathological and imaging findings. The texture analysis of primary tumours and lymph nodes was performed on T2-weighted images. Texture parameters with the highest ability to discriminate between the two histological types of primary tumours and metastatic and non-metastatic lymph nodes were selected based on Fisher coefficients (cut-off value > 3). The parameters’ discriminative ability was tested using an k nearest neighbour (KNN) classifier, and by comparing their absolute values through an univariate and receiver operating characteristic analysis. Results: The KNN classified metastatic and non-metastatic lymph nodes with 93.75% accuracy. Ten entropy variations were able to identify metastatic lymph nodes (sensitivity: 79.17–88%; specificity: 93.48–97.83%). No parameters exceeded the cut-off value when differentiating between histopathological entities. In conclusion, texture analysis can offer a superior non-invasive characterization of lymph node status, which can improve the staging accuracy of cervical cancers.

Keywords