PLoS ONE (Jan 2019)
Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer's Disease on optical coherence tomography angiography.
Abstract
PURPOSE:Patients with Alzheimer's Disease (AD) exhibit decreased retinal blood flow and vessel density (VD). However, it is not known whether these changes are also present in individuals with early AD (eAD) or amnestic type mild cognitive impairment (aMCI), an enriched pre-AD population with a higher risk for progressing to dementia. We performed a prospective case-control clinical study to investigate whether optical coherence tomography angiography (OCTA) parameters in the macula and disc are altered in those with aMCI and eAD. METHODS:This is a single center study of 32 participants. Individuals with aMCI/eAD (n = 16) were 1:1 matched to cognitively normal controls (n = 16). We evaluated OCTA images of the parafoveal superficial capillary plexus (SCP) and two vascular layers in the peripapillary region, the radial peripapillary capillary (RPC) and superficial vascular complex (SVC). Outcome vascular and structural parameters included VD, vessel length density (VLD), adjusted flow index (AFI) and structural retinal nerve fiber layer (RNFL) thickness. We compared these parameters between the two groups and examined the correlation between OCTA parameters and cognitive performance on the Montreal Cognitive Assessment (MoCA). RESULTS:Cognitively impaired participants demonstrated statistically significant decrease in parafoveal SCP VD and AFI as compared to controls, but no statistically significant difference in peripapillary parameters. Furthermore, we found a significant positive correlation between MoCA scores for the entire study cohort and both the parafoveal SCP VD and peripapillary RPC VLD. CONCLUSION:OCTA shows significant decline in parafoveal flow and VD in individuals with early cognitive impairment related to AD, suggesting that these parameters could have potential utility as early disease biomarkers. In contrast, the presence of larger vascular channels in the peripapillary region may have obscured subtle capillary changes in that region. Overall, the correlation between vascular OCTA parameters and cognitive performance supports further OCTA studies in this population.