Sensors (Sep 2020)

An Insulin Bolus Advisor for Type 1 Diabetes Using Deep Reinforcement Learning

  • Taiyu Zhu,
  • Kezhi Li,
  • Lei Kuang,
  • Pau Herrero,
  • Pantelis Georgiou

DOI
https://doi.org/10.3390/s20185058
Journal volume & issue
Vol. 20, no. 18
p. 5058

Abstract

Read online

(1) Background: People living with type 1 diabetes (T1D) require self-management to maintain blood glucose (BG) levels in a therapeutic range through the delivery of exogenous insulin. However, due to the various variability, uncertainty and complex glucose dynamics, optimizing the doses of insulin delivery to minimize the risk of hyperglycemia and hypoglycemia is still an open problem. (2) Methods: In this work, we propose a novel insulin bolus advisor which uses deep reinforcement learning (DRL) and continuous glucose monitoring to optimize insulin dosing at mealtime. In particular, an actor-critic model based on deep deterministic policy gradient is designed to compute mealtime insulin doses. The proposed system architecture uses a two-step learning framework, in which a population model is first obtained and then personalized by subject-specific data. Prioritized memory replay is adopted to accelerate the training process in clinical practice. To validate the algorithm, we employ a customized version of the FDA-accepted UVA/Padova T1D simulator to perform in silico trials on 10 adult subjects and 10 adolescent subjects. (3) Results: Compared to a standard bolus calculator as the baseline, the DRL insulin bolus advisor significantly improved the average percentage time in target range (70–180 mg/dL) from 74.1%±8.4% to 80.9%±6.9% (p0.01) and 54.9%±12.4% to 61.6%±14.1% (p0.01) in the the adult and adolescent cohorts, respectively, while reducing hypoglycemia. (4) Conclusions: The proposed algorithm has the potential to improve mealtime bolus insulin delivery in people with T1D and is a feasible candidate for future clinical validation.

Keywords