Communications in Combinatorics and Optimization (Jun 2016)

Twin minus domination numbers in directed graphs

  • M‎. ‎Atapour,
  • A‎. ‎Khodkar

DOI
https://doi.org/10.22049/CCO.2016.13575
Journal volume & issue
Vol. 1, no. 2
pp. 149 – 164

Abstract

Read online

Let $D=(V,A)$ be a finite simple directed graph‎. ‎A‎ ‎function $f:V\longrightarrow \{-1,0,1\}$ is called a twin minus‎ ‎dominating function if $f(N^-[v])\ge 1$ and $f(N^+[v])\ge‎ ‎1$ for each vertex $v\in V$‎. ‎The twin minus domination number of‎ ‎$D$ is $\gamma_{-}^*(D)=\min\{w(f)\mid f \mbox{ is a twin minus‎ ‎dominating function of }‎ ‎D\}$‎. ‎In this paper‎, ‎we initiate the study of twin minus‎ ‎domination numbers in digraphs and present some lower bounds for‎ ‎$\gamma_{-}^*(D)$ in terms of the order‎, ‎size and maximum and‎ ‎minimum in-degrees and out-degrees.

Keywords